Hybrid evolutionary algorithm based fuzzy logic controller for automatic generation control of power systems with governor dead band non-linearity

نویسنده

  • Omveer Singh
چکیده

Abstract: A new intelligent Automatic Generation Control (AGC) scheme based on Evolutionary Algorithms (EAs) and Fuzzy Logic concept is developed for a multiarea power system. EAs i.e. Genetic Algorithm–Simulated Annealing (GA–SA) are used to optimize the gains of Fuzzy Logic Algorithm (FLA)-based AGC regulators for interconnected power systems. The multi-area power system model has three different types of plants i.e. reheat, non-reheat and hydro, and are interconnected via Extra High Voltage Alternate Current transmission links. The dynamic model of the system is developed considering one of the most important Governor Dead Band (GDB) non-linearity. The designed AGC regulators are implemented in the wake of 1% load perturbation in one of the control areas and the dynamic response plots are obtained for various system states. The investigations carried out in the study reveal that the system dynamic performance with hybrid GA–SA-tuned Fuzzy technique (GASATF)-based AGC controller is appreciably superior as compared to that of integral and FLA-based AGC controllers. It is also observed that the incorporation *Corresponding author: Omveer Singh, Electrical Engineering Department, Maharishi Markandeshwar University, Ambala, Haryana, India Current affiliation: Electrical Engineering Department, School of Engineering, Gautam Buddha University, Greater Noida, Uttar Pradesh, India E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Fuzzy Logic Based PI Controller for DFIG-based Wind Farm Aimed at Automatic Generation Control in an Interconnected Two Area Power System

This paper addresses the design procedure of a fuzzy logic-based adaptive approach for DFIGs to enhance automatic generation control (AGC) capabilities and provide better dynamic responses in multi-area power systems. In doing so, a proportional-integral (PI) controller is employed in DFIG structure to control the governor speed of wind turbine. At the first stage, the adjustable parameters of ...

متن کامل

Differential evolution algorithm based automatic generation control for interconnected power systems with non-linearity

Automatic Generation Control (AGC); Boiler dynamics; Generation Rate Constraint (GRC); Governor dead band; Proportional Integral Derivative (PID) controller; Differential Evolution (DE) algorithm Abstract This paper presents the design and performance analysis of Differential Evolution (DE) algorithm based Proportional–Integral (PI) and Proportional–Integral–Derivative (PID) controllers for Aut...

متن کامل

A Robust Discrete FuzzyP+FuzzyI+FuzzyD Load Frequency Controller for Multi-Source Power System in Restructuring Environment

In this paper a fuzzy logic (FL) based load frequency controller (LFC) called discrete FuzzyP+FuzzyI+FuzzyD (FP+FI+FD) is proposed to ensure the stability of a multi-source power system in restructured environment. The whale optimization algorithm (WOA) is used for optimum designing the proposed control strategy to reduce fuzzy system effort and achieve the best performance of LFC task. Further...

متن کامل

Control Performance Standard based Load Frequency Control of a two area Reheat Interconnected Power System considering Governor Dead Band nonlinearity using Fuzzy Neural Network

The frequency control of reheat interconnected two area power systems are mainly characterized by non-linearity and uncertainty. A hybrid neural network and fuzzy control is proposed for load frequency control in the power systems considering governor dead band (GDB) non-linearity. Fuzzy with neural network is employed to forecast the control input requirement and system's future output, b...

متن کامل

Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Differential Evolution Technique

This paper presents a differential evolution algorithm to design a robust PI and PID controllers for Load Frequency Control (LFC) of nonlinear interconnected power systems considering the boiler dynamics, Governor Dead Band (GDB), Generation Rate Constraint (GRC). Differential evolution algorithm is employed to search for the optimal controller parameters. The proposed method easily copes of wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017